Funzione di Cantor
In matematica, la funzione di Cantor (a volte chiamata funzione di Cantor-Vitali, o scala del diavolo) è un esempio di funzione continua e crescente nonostante abbia derivata zero in quasi tutti i punti essendo costante in tutti i sottointervalli di [0,1] che non contengono punti dell'insieme di Cantor. Intuitivamente, è una scala con infiniti gradini, tutti di pendenza zero, ma ad altezze progressivamente crescenti, in modo che la pendenza media risulti comunque pari a 1.